FFT_2D code
Source Code
/*-------------------------------------------------------------------------
Perform a 2D FFT inplace given a complex 2D array
The direction dir, 1 for forward, -1 for reverse
The size of the array (nx,ny)
Return false if there are memory problems or
the dimensions are not powers of 2
*/
int FFT2D(COMPLEX **c,int nx,int ny,int dir)
{
int i,j;
int m,twopm;
double *real,*imag;
/* Transform the rows */
real = (double *)malloc(nx * sizeof(double));
imag = (double *)malloc(nx * sizeof(double));
if (real == NULL || imag == NULL)
return(FALSE);
if (!Powerof2(nx,&m,&twopm) || twopm != nx)
return(FALSE);
for (j=0;j<ny;j++) {
for (i=0;i<nx;i++) {
real[i] = c[i][j].real;
imag[i] = c[i][j].imag;
}
FFT(dir,m,real,imag);
for (i=0;i<nx;i++) {
c[i][j].real = real[i];
c[i][j].imag = imag[i];
}
}
free(real);
free(imag);
/* Transform the columns */
real = (double *)malloc(ny * sizeof(double));
imag = (double *)malloc(ny * sizeof(double));
if (real == NULL || imag == NULL)
return(FALSE);
if (!Powerof2(ny,&m,&twopm) || twopm != ny)
return(FALSE);
for (i=0;i<nx;i++) {
for (j=0;j<ny;j++) {
real[j] = c[i][j].real;
imag[j] = c[i][j].imag;
}
FFT(dir,m,real,imag);
for (j=0;j<ny;j++) {
c[i][j].real = real[j];
c[i][j].imag = imag[j];
}
}
free(real);
free(imag);
return(TRUE);
}
/*-------------------------------------------------------------------------
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of 2^m points.
dir = 1 gives forward transform
dir = -1 gives reverse transform
Formula: forward
N-1
---
1 \ - j k 2 pi n / N
X(n) = --- > x(k) e = forward transform
N / n=0..N-1
---
k=0
Formula: reverse
N-1
---
\ j k 2 pi n / N
X(n) = > x(k) e = forward transform
/ n=0..N-1
---
k=0
*/
int FFT(int dir,int m,double *x,double *y)
{
long nn,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
nn = 1;
for (i=0;i<m;i++)
nn *= 2;
/* Do the bit reversal */
i2 = nn >> 1;
j = 0;
for (i=0;i<nn-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<nn;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<nn;i++) {
x[i] /= (double)nn;
y[i] /= (double)nn;
}
}
return(TRUE);
}